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Abstract The Essence language allows a user to specify a constraint
problem at a level of abstraction above that at which constraint mod-
elling decisions are made. Essence specifications are refined into con-
straint models using the Conjure automated modelling tool, which em-
ploys a suite of refinement rules. However, Essence is a rich language
in which there are many equivalent ways to specify a given problem. A
user may therefore omit the use of domain attributes or abstract types,
resulting in fewer refinement rules being applicable and therefore a re-
duced set of output models from which to select. This paper addresses
the problem of recovering this information automatically to increase the
robustness of the quality of the output constraint models in the face of
variation in the input Essence specification. We present reformulation
rules that can change the type of a decision variable or add attributes
that shrink its domain. We demonstrate the efficacy of this approach in
terms of the quantity and quality of models Conjure can produce from
the transformed specification compared with the original.

1 Introduction and Background

The modelling bottleneck is the difficulty of formulating a problem of interest as
a constraint model suitable for input to a constraint solver. The space of possible
models for a given problem is typically large, and the model selected can have
a dramatic effect on the efficiency of constraint solving. This presents a serious
challenge for the inexpert user, who has difficulty in formulating a good (or even
correct) model, and motivates efforts to automate constraint modelling. In this
paper we show that one source of difficulty to inexpert users can be ameliorated
by type strengthening rules.

In this paper our focus is on the refinement-based approach, where a user
writes abstract constraint specifications that describe a problem above the level
at which constraint modelling decisions are made. Abstract constraint specific-
ation languages, such as Essence or Zinc, support abstract decision variables
with types such as set, multiset, relation and function, as well as nested types,
such as set of sets and multiset of relations. Problems can typically be spe-
cified very concisely in this way, as demonstrated by the examples in Figure 1.
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However, existing constraint solvers do not support these abstract decision vari-
ables directly, so abstract constraint specifications must be refined into concrete
constraint models.

Work on automation of aspects of constraint modelling can be grouped
into distinct categories. Models can be learned from positive or negative ex-
amples [12,9,4], various kinds of queries [5,7,6], arguments [30], or from natural
language descriptions [18]. It is possible to partially automate the transformation
of medium-level solver-independent constraint models [29,24,31,23,25,26,27,21].
Closer to our work, implied constraints have been derived from a constraint
model [16,11,10,8,20] and refinement of abstract constraint specifications has
been considered [15] using the languages ESRA [13], Essence [14], F [17] and
Zinc [22,19,28].

We here use Essence [14] as our abstract problem specification language.
Essence supports abstract decision variables with types such as set, mset (de-
noting a multiset), relation and function, as well as nested types, such as set
of set and mset of relation. Types are used to construct domains, which
are abstract collections of objects of some common type but with possibly addi-
tional structure indicated by means of domain attributes. Problems can typically
be specified very concisely in this way. Abstract constraint specifications must be
refined into concrete constraint models for existing constraint solvers. Our Con-

jure system [3,1,2] employs refinement rules to convert an Essence specifica-
tion into the solver-independent constraint modelling language Essence Prime

[29]. From Essence Prime we use Savile Row [26] to translate the model into
input for a particular constraint solver while performing solver-specific model
optimisations.

Essence is a rich language in which there are many equivalent ways to specify
a given problem. It is possible, therefore, for a user to avoid the use of domain
attributes or abstract types, resulting in fewer refinement rules being applicable
and therefore a reduced set of output models from which to select. This paper
addresses the problem of recovering this information automatically and hence
increasing the robustness of the quality of the output constraint models. We
present reformulation rules that can change the type of a decision variable or add
attributes that shrink its domain. We demonstrate the efficacy of this approach
in terms of the quantity and quality of models Conjure can produce from the
transformed specification compared with the original. All the methods described
in this paper are implemented as part of the Conjure system.3

2 Motivating Examples

Essence is a rich language with a wide range of type constructors and domain
attributes. Conjure uses type constructors and domain attributes when se-
lecting from its library of representations. Conjure has special highly efficient

3 An archive containing several examples of robustness transformations performed by
Conjure can be found at the following repository:
https://github.com/stacs-cp/ModRef2021-robustness

https://github.com/stacs-cp/ModRef2021-robustness


representations for many specific domains. For example, sets of fixed size and
total functions. These are dramatically more efficient during constraint solving
than the representations for variable-size sets and partial functions. Hence it is
absolutely vital that the type constructor and domain attributes are as specific
as possible. In this section we will give some concrete examples of how this can
be achieved.

In Essence, a domain attribute (denoted in brackets after the name of a type
in a domain) specialises the domain. For example, a function can be surjective,
injective or total (Essence functions are partial by default). The specifica-
tion given in Figure 1a defines a partial surjective function. A partial surjective
function from a set S to a set T where |S| = |T | must necessarily be a total
bijective function. Therefore we can strengthen this function to be function

(bijective, total) Index --> Index. This has not changed the number of
values in the domain, but Conjure has specialised efficient representations for
total functions, so this change can lead to dramatically better performance
during constraint solving.

given n : int(1..)

letting Index be domain int(1..n)

find arrangement : function (surjective) Index --> Index

(a) An Essence specification using function domains, before domain strengthening

given n : int(1..)

letting Index be domain int(1..n)

find arrangement : function (total, bijective) Index --> Index

(b) An Essence specification using function domains, after domain strengthening

find x : relation of (int(1..3) * int(4..6) * int(7..9))

such that forAll i : int(1..3) . forAll k : int(7..9) . x(i,_,k) = {ǫ}

(c) Input Essence specification with a relation decision variable

find x: function (total) (int(1..3), int(7..9)) --> int(4..6)

such that forAll i : int(1..3) . forAll k : int(7..9) . toRelation(x)(i,k,_) = {ǫ}

(d) Reformulating the above to a function domain and the toRelation operator

find x: function (total) (int(1..3), int(7..9)) --> int(4..6)

such that forAll i : int(1..3) . forAll k : int(7..9) . x(i,k) = ǫ

(e) Reformulating the above to remove the toRelation operator

Figure 1: Essence domain and representation rule examples



The type of a domain can also make a dramatic difference to the quality
of models produced by Conjure. Our second class of reformulations identify
when a type may be replaced by a more specific type (for example, replacing a
multiset with a set).

The Essence specification in Figure 1c contains a relation variable that
would be better posed as a function. For each assignment to the first and third
value in the relation, the relation is satisfied by exactly one assignment to the
middle index. In this example, ǫ can be an arbitrary Essence expression possibly
involving other decision variables. The second index is functionally defined by the
first and third indices, so we can replace the relation with a function as shown in
Figure 1d. To simplify the process of changing the relation to a function, we have
replaced all occurrences of the relation x in the constraints with toRelation(x).
The toRelation operator maps the function back into a relation, and allows
us to be sure we can transform any constraint involving the relation x into a
constraint on the function x. We also reordered the indices of the relation to
place the functionally defined index (or indices) at the end.

Figure 1d has reduced the domain size of the variable in our specification
from 23

3

= 134, 217, 728 to 39 = 19, 683. Reducing the size of a domain strongly
indicates (but does not guarantee) that the specification has been improved,
because we have a much smaller domain to represent and search in our constraint
solver. The final step in the reformulation is removing the toRelation operators
where possible. This results in the final specification given in Figure 1e.

3 Domain Strengthening via Attribute Recovery

Refinement rules in Essence rewrite an abstract structure into a more concrete
equivalent. Domain attributes provide additional information that can be used
for more effective refinement. This information can also be provided in an Es-

sence specification in the form of constraints. However, Conjure uses only the
domain and attributes of a variable to select its representation, so using con-
straints instead of domain attributes reduces the quantity and quality of models
output by Conjure. In this section we describe how an Essence specification
can be reformulated to recover latent attribute information that was omitted
from the specification. There exists a strengthening rule to recover each attrib-
ute in Essence, as we will demonstrate below.

A strengthening rule takes as input a domain and optionally a constraint
expression and outputs a new domain. In addition, it indicates whether the
input constraint should remain (by default it is removed). For some rules the
entire constraint is subsumed by the addition of the attribute so the constraint
is not required, in others the constraint is still required. The strengthening rules
are applied by Conjure before the representation of each variable is chosen. The
strengthening rules presented in this paper take a similar form to the Conjure

rules presented previously [3]. Each rule takes as input a single decision variable
and one or more constraints, and outputs a new modified variable and one or
more constraints. Each rule removes the constraints matched by the input of the



rule unless we state otherwise. All other constraints involving the variable are
unchanged, except referring to the new name for the variable.

Conjure rules contain meta-variables to denote expressions which must be
matched, such as the &n in Figure 3a. These meta-variables can match an arbit-
rary Essence expression, not just a single identifier. This means our rules can
match large Essence expressions with simple patterns. Because the identifier
&n in Figure 3a is also used in the size attribute of a set, it must be a constant
or parameter, not a decision variable. The rule matcher will automatically reject
any &n which does not meet this requirement. Other identifiers, such as &exp in
Figure 4a, will match with any Essence expression at all, including expressions
involving decision variables.

General Conjure rewrite rules (such as a rule which normalises A > B to
B < A) can match partial expressions contained within constraints. Strength-
ening rules must only be applied to top-level constraints. In Essence abstract
domain constructors can be nested arbitrarily, and attributes can be recovered
for domains nested inside other domain constructors. This is done by Conjure

for all rules automatically, and does not require writers of rules to worry about
deeply nested types. The example given in Figure 2a shows an example where
we place a constraint on all the mset members of S. Conjure automatically re-
cognises the forAll m in S quantifier imposes the constraint on all members of
S, and so the rule in Figure 3b which is designed for mset variables will trigger,
adding to the members of S the attribute (maxOccur 3), producing the output
in Figure 2b.

3.1 Recovering Size and Occurrence Related Attributes

In Essence abstract domain constructors — set, mset, function, relation,
and partition — can have size, minSize, and maxSize attributes. Conjure

can recover these attributes when a cardinality constraint is posted at the top
level in the problem specification. For example, a constraint of the form |x| =

n implies the recovery of a size attribute for x; the constraints |x| < n and
|x| <= n imply a maxSize attribute with the values n-1 and n respectively.
The recovery of the minSize attribute is handled similarly.

In addition to the three size attributes common to all abstract domain con-
structors, mset and partition have additional attributes which are handled
similarly. For mset, the attributes minOccur and maxOccur constrain the num-
ber of occurrences of individual values. For partition the attributes partSize,
minPartSize, maxPartSize constrain the sizes of the parts in the partition, and
numParts, minNumParts constrain the number.

Figure 3a presents a recovery of the size attribute for sets. This rule as
given here is specialised to just the set type constructor, however in Conjure

this rule is implemented to handle any abstract domain constructor. Figure 3b
presents a recovery of the maxOccur attribute for mset. This rule, as well as
all other strengthening rules also work when the mset domain is nested inside
other abstract domain constructors. Figure 2a presents an example of a nested
type where we recover attributes for both the inner and outer type constructors.



find S : set of mset of int(0..9)

such that

|S| = 2,

forAll m in S . forAll i : int(0..9) . freq(m,i) <= 3

(a) The input Essence problem specification

find S: set (size 2) of mset (maxOccur 3) of int(0..9)

(b) Recovered attributes

Figure 2: An example Essence specification with nested domains.

Input find &x : set of &T

Input |&x| = &n

Output find &x : set (size &n) of &T

(a) Recovering the size attribute for sets

Input find &x : mset of &T

Input forAll &i : &T . freq(&x,&i) <= &n

Output find &x : mset (maxOccur &n) of &T

(b) Recovering the maxOccur attribute for multi-sets

Figure 3: Rules for the domains in Figure 2.

In Figure 2a, the domain given of S is infinite. While Conjure requires all
variables have a finite domain, the check for finiteness is performed after type-
strengthening. This shows another way in which type strengthening can help
users model their problems more easily.

3.2 Recovering Special function and sequence Attributes

In addition to the common minSize, maxSize and size attributes, functions
have four additional attributes: total, injective, surjective, and bijective.
Figure 4a gives a strengthening rule, where the total attribute is inferred if
there is a constraint to assign values to all mappings in the function. Here, un-
like most other strengthening rules, the constraint is not removed because it
contains more information than just representing a total attribute. Figure 4b
gives a strengthening rule, where the surjective attribute is inferred if there is
a constraint stating for all values in the range of the function there is a mapping.
Similarly, Figure 4c gives a strengthening rule where the injective attribute is
inferred if there is a constraint stating the image of the function to be distinct
for distinct values. In both of these rules, the constraints are removed from the
model because they are subsumed by adding the suitable attribute to x. Con-



Input find &x : function &T_1 --> &T_2

Input forAll &i : &T_1 . &x(&i) = &exp

Output find &x : function (total) &T_1 --> &T_2

The constraint remains unchanged.

(a) Recovering the total attribute for functions

Input find &x : function &T_1 --> &T_2

Input forAll &j : &T_2 . exists &i : &T_1 . f(&i) = &j

Output find &x : function (surjective) &T_1 --> &T_2

(b) Recovering the surjective attribute for functions

Input find &x : function &T_1 --> &T_2

Input forAll &i,&j : &T_1 . &i != &j -> &x(&i) != &x(&j)

Output find &x : function (injective) &T_1 --> &T_2

(c) Recovering the injective attribute for functions

Figure 4: Strengthening rules for attributes of function domains

jure will further infer the bijective attribute for any variable with both the
injective and surjective attributes.

Sequence domains support the injective, surjective and bijective at-
tributes as well. These are handled similarly to functions.

3.3 Recovering Special relation Attributes

Figure 5 gives strengthening rules to infer functional and total functional

attributes. These two attributes restrict the domain of a relation so some columns
of a relation are functionally determined by the rest of the columns. functional
restricts the functionally determined columns take at most one assignment for
each assignment to the other columns, total fuctional restricts the func-
tionally defined columns to take exactly one assignment. For example, a bin-
ary relation r together with the constraint forAll i : dom . |r(i,_)| = 1 can be
turned into a function mapping values from the first column to the second
one. In addition, such a function domain has to be total, because there is
exactly one value of the second column for each value of the first. The con-
straint forAll i : dom . |r(i,_)| <= 1 would let Conjure recover a functional

attribute instead of total functional.

3.4 Recovering Special partition Attributes

Figure 6 gives strengthening rules for the partition type constructor. In the
first the regular attribute is inferred if there is a constraint forcing all parts in
the partition to have the same cardinality. As discussed earlier in Section 3.1,
Conjure also recovers the numParts and partSize attributes for partition.



Input find &x : relation of (&T_1 * &T_2 * &T_3)

Input |&x(&a,&b,_)| <= 1

Output find &x : relation (functional (1,2)) of (&T_1 * &T_2 * &T_3)

Input find &x : relation of (&T_1 * &T_2 * &T_3)

Input |x(&a,&b,_)| = 1

Output find &x : relation (total_functional (1,2)) of (&T_1 * &T_2 * &T_3)

Input find &x : relation of (&T_1 * &T_2 * &T_3)

Input &x(&a,&b,_) = &c

Output find &x : relation (total_functional (1,2)) of (&T_1 * &T_2 * &T_3)

The constraint remains unchanged.

Figure 5: Strengthening rules for attributes of relation domains

Input find &x : partition from &T

Input forAll &i,&j in parts(&x) . |&i| = |&j|

Output find &x : partition (regular) from &T

Figure 6: Strengthening rules for attributes of partition domains

3.5 Domain-Only Recovery

It is sometimes possible to recover domain attributes just from the domain of
a variable. For example in Figure 1a, a surjective function between two do-
mains of equal size must be total and bijective. Conjure contains a range
of similar rules for other types. For example for a mset domain maxSize n im-
plies maxOccur n and minOccur n implies minSize n. Futher, for partitions if
the partSize multiplied by the numParts is equal to the size of the set the
partition is defined over, the partition is complete and regular. While these
modifications do not remove any constraints, they allow Conjure to choose
from a wider range of representations, as representation selection is based upon
the domain and attributes.

3.6 Limitations of Attribute Recovery

Each of Conjure’s attribute recovery rules match an explicit pattern of con-
straints and attributes. The reformulation rules in Conjure can reduce other
constraints to fit into these patterns, but there are occasions where we fail to
detect attributes. Theorem 1 shows this is inevitable, as detecting if we can add
an attribute to a variable is equivalent to the halting problem.

Theorem 1. For any Essence attribute A, suppose there is an oracle that can

decide, for any Essence specification S containing variable V , whether V can

have the attribute A attached to it without removing solutions. Then this oracle



can be used to solve the halting problem, unless A is satisfied by every variable

it can be attached to.

Proof. To reduce from the Halting problem, consider determining if a Turing
machine T , with a distinguished state q and no halting states, ever reaches q when
started on a blank tape. This problem is Σ1

0
-complete. We construct an Essence

specification which takes a parameter n and has a solution if T reaches q within
n steps, since T cannot reach any part of the tape that is more than n steps from
the starting position. Detecting if this Essence specification has a solution for
any n is therefore equivalent to solving the halting problem. Assuming that A is
not satisfied by some variable V , we now add V to this Essence specification,
placing no constraints on the variable V . If T never reaches state q, the problem
has no solutions and so we can add any extra attribute to V without affecting
the set of solutions. If T does reach state q after some number of steps n, then
the set of solutions includes (possibly many copies of) all assignments to V , so
the addition of A will reduce the set of solutions and is invalid. The supposed
oracle therefore solves the halting problem.

4 Type Strengthening

As well as adding attributes to domains,Conjure also implements type strength-
ening rules which transform one domain into another, e.g. turning a relation

into a function or mset into set. This provides a greater set of representational
choices.

4.1 Overview

Our implementation of type strengthening builds directly upon domain strength-
ening. We split type strengthening into two parts. Firstly, for each type T which
can be strengthened to another type U, there is an attribute on T which restricts
a variable of type T to assignments of type U, and every other attribute on T is
also valid on U. This means detecting type strengthening uses only the domain
of a variable. Further, for each type T which can be strengthened into another
type U, we have an operator toT which transforms a U back into a T. This allows
us to replace a variable T t with a variable U u, replacing all occurrences of t
with toT(u). We then use Conjure’s standard rewrite engine to simplify the
resulting specification.

4.2 MSet to Set

The rule below demonstrates transforming a mset with (maxOccur 1) into a
set. When applying this rule every occurrence of &x in the model is replaced with
toMSet(&x). For example, freq(&x,2) = 0 turns into freq(toMSet(&x),2)

= 0. Later Conjure simplifies this expression to !(2 in &x) by applying one
of its rewrite rules.



Input find &x : mset (maxOccur 1) of &T

Output find &x : set of &T

4.3 Relation to Function

We previously discussed in Section 3.3 how we can detect relations which are
functional in one or more of their indices. Such relations can be transformed
into functions. In general these transformations involve arbitrary arity relations
with an arbitrary subset of the indices of the relation defining the domain of
the function. In this section we will provide some concrete examples for arity 3
relations.

The two rules below show examples of transforming a relation to a partial
and total function. When transforming a relation into a function, we re-
place all occurrences of the relation x with the expression toRelation(x). This
leads to specifications like Figure 1d, where we use toRelation and project the
resulting relation. Conjure simplifies this example to the specification given in
Figure 1e.

Input find &x : relation (functional (1,2)) of (&T_1 * &T_2 * &T_3)

Output find &x : function (&T_1 * &T_2) --> &T_3

Input find &x : relation (total_functional (1,3)) of (&T_1 * &T_2 * &T_3)

Output find &x : function (total) (&T_1 * &T_3) --> &T_2

5 Conclusions

We have shown how we can make the powerful and expressive type system of
Essence more robust and easier to use. Type and domain strengthening make
Essence more useful for beginners who have not yet learnt, or do not wish to
learn, the full list of attributes available in Essence. Furthermore, automated
type and domain strengthening allows for new attributes to be added to the Es-
sence language which can improve the performance of an Essence specification
without the user having to make any changes to their model.

In future work, we plan to extend type and domain strengthening to more
general kinds of rewriting of Essence specifications. For instance, currently we
cannot recover the injectivity of f and g from

forAll i,j . f[i] = j <-> g[j] = i

via our existing type and domain strengthening rules.
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